Duo Photometer plus
DP 350
Bedienungsanleitung
Version 5.15 / 5.15 SI
Ausgabe 2025-01

Sehr geehrte Kundin, sehr geehrter Kunde,

wir freuen uns, dass Sie sich für das Duo Photometer plus der Diaglobal GmbH entschieden haben und danken Ihnen für das uns entgegengebrachte Vertrauen.

Das Duo Photometer plus gehört zu einer neuen Generation mobiler Kleingeräte, die von der Diaglobal GmbH entwickelt werden und speziell für die Vor-Ort-Analytik konzipiert sind.

Mit der Software-Version ab V5.3 wurde zusätzlich eine automatische Prüfung der Gerätefunktion integriert. Damit entspricht das Duo Photometer plus den Anforderungen der Richtlinien der Bundesärztekammer.

Mit dem Duo Photometer plus lassen sich 6 klinisch-chemische Parameter bestimmen. Das Gerät kann auf Wunsch mit SI-Maßeinheiten ausgeliefert werden (siehe Kapitel 9, Technische Daten, Tabelle Messbereiche).

Die für die Testdurchführung benötigten Kits und das zur Messung erforderliche Zubehör sind ebenfalls bei der Diaglobal GmbH erhältlich.

Viel Erfolg bei der Arbeit mit dem neuen Duo Photometer plus!

Ihre Diaglobal GmbH

Inhaltsverzeichnis

		Seite
1.	Allgemeine Angaben zum Photometer	4
2.	Aufstellung	5
3.1 3.1.1 3.1.2 3.2	Gerätebeschreibung Stromversorgung Netzbetrieb Netzunabhängiger Betrieb Messsystem	5 6 6 6
4. 4.1 4.2 4.3 4.4 4.5	Service Justierung und Kalibrierung Wartung Reinigung Störungen Entsorgung	7 7 7 7 7
5. 5.1 5.2 5.3 5.4	Benötigte Reagenzien und Laborhilfsmittel Hinweis zur Haltbarkeit der Verbrauchsartikel Reagenzien / Parameterliste Kontrollmaterialien Laborhilfsmittel und Zubehör	8 8 8 9
6.	Qualitätssicherung gemäß RiliBÄK	10
7. 7.1 7.2	Messverfahren Endpunktmessung Endpunktmessung mit Berücksichtigung des Probenleerwertes und einprogrammierter Messzeit Mehrpunktmessung mit Berücksichtigung des Probenleerwertes	11 11 11
7.3	Mehrpunktmessung mit Berücksichtigung des Probenleerwertes und Erkennung des Endpunktes Mehrpunktmessung mit Berücksichtigung des Probenleerwertes und Berechnung des Endpunktes	11 12
8. 8.1 8.2 8.3 8.4 8.5 8.6	Messung Einschalten des Gerätes Selbsttest beim Einschalten Testanwahl Ausschalten des Gerätes Integrierte Prüfungen der Gerätefunktionen Hinweise zur Probennahme und Durchführung der Messung	12 12 12 12 13 13
9.	Technische Daten	16
10.	Allgemeine Richtlinien, Normen und Hinweise	17
11.	Anlage: Messungen "Schritt für Schritt"	17ff.

1. Allgemeine Angaben zum Photometer

Name des Gerätes: Duo Photometer plus

Typ: DP 350

Charakterisierung: In-vitro-Diagnostikum, Messgerät zur Bestimmung

ausgewählter klinisch-chemischer Parameter im Blut,

Serum/Plasma und Liquor.

Hersteller:

Diaglobal GmbH Köpenicker Str. 325 / Haus 41 12555 Berlin

Tel: +49 (0) 30 6576 2597 Fax: +49 (0) 30 6576 2517 E-Mail: info@diaglobal.de

http://www.diaglobal.de

Das Duo Photometer plus erfüllt die grundlegenden Anforderungen des Anhangs I der Richtlinie 98/79/EG über In-vitro-Diagnostika.

Die Konformität des Gerätes mit der Richtlinie 98/79/EG wird durch das CE-Kennzeichen bestätigt.

Die Gebrauchsanweisung ist zu beachten.

Bestellnummer

Seriennummer

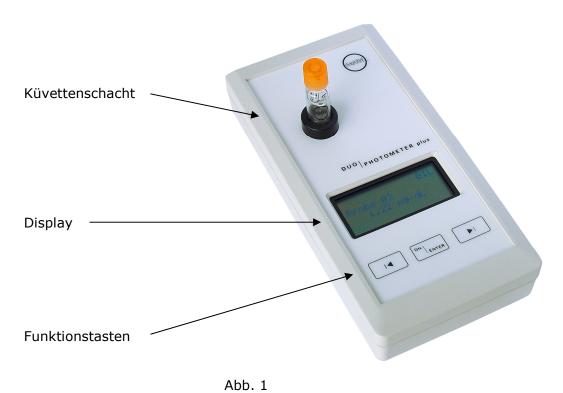
Das Photometer darf nicht über den normalen Hausmüll entsorgt werden. Nicht mehr benötigte Geräte werden von uns kostenlos zurückgenommen und entsorgt.

Achtung, Begleitdokumente beachten!

2. Aufstellung

Für den störungsfreien Betrieb des Gerätes müssen folgende Umgebungsbedingungen erfüllt sein:

- Umgebungstemperatur: 0 °C ... 40 °C
- Keine direkte Bestrahlung durch Sonnenlicht o. ä. Wärmestrahlungsquellen
- Frei von übermäßigem Staub
- Frei von Erschütterungen
- Frei von Beeinflussung durch elektromagnetische Wellen
- Betrieb auf einer waagerechten Unterlage


Bitte beachten Sie folgende Bedienungshinweise:

Legen Sie den Akku oder die Batterie ein, wenn das Gerät netzunabhängig betrieben werden soll oder verbinden Sie das Photometer mit dem Netzgerät.

Drücken der Taste **<ON/ENTER>** (Abb. 1) löst den internen Gerätecheck aus, den das Gerät selbsttätig durchführt.

Danach ist das Gerät sofort messbereit.

3. Gerätebeschreibung

3.1 Stromversorgung

Das Duo Photometer plus kann wahlweise mit Netzgerät, Batterie (9V-Block) oder Akku (Bauform 6F22 o. PP3) betrieben werden.

3.1.1 Netzbetrieb

Das Photometer wird mit einem Netzgerät für den Betrieb an einer Netzspannung im Bereich 100 V ... 240 V AC angeboten. Das Netzgerät ist mit einem Diaglobal Logo (Aufkleber) gekennzeichnet.

Der Anschlussstecker des Netzgeräts wird mit der rückseitigen Stromversorgungsbuchse des Gerätes verbunden.

3.1.2 Netzunabhängiger Betrieb

Einsetzen des Akkus bzw. der Batterie:

Rändelschrauben auf der Unterseite des Gerätes herausdrehen und Batteriefachdeckel abnehmen. Akku bzw. Batterie mit dem Druckknopfkontakt verbinden und in das Gerät einsetzen. Batteriefachdeckel wieder aufsetzen und Rändelschrauben eindrehen.

Hinweise:

- Das Duo Photometer plus kann mit Netzgerät betrieben werden, ohne dass hierfür eine Entfernung des Akkus oder der Batterie erforderlich ist.
- Der Akku wird im eingebauten Zustand nicht geladen. Hierfür ist ein separates Aufladegerät erforderlich.
- Soll das Photometer mit einem Akku betrieben werden, empfehlen wir, den Akku vor der Verwendung vollständig aufzuladen und einen aufgeladenen Ersatz-Akku mitzuführen.

3.2 Messsystem

Der optische Block ist in Abb. 2 dargestellt.

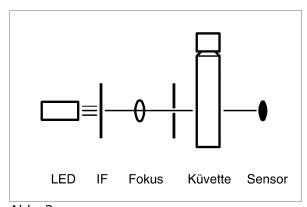


Abb. 2

Das von einer LED emittierte Licht wird zunächst durch einen Interferenzfilter IF (HWB ~ 5 nm) in seine Wellenlängenbereiche (520 nm / 546 nm) selektiert und dann gebündelt auf die Küvette im Schacht geleitet. Nach dem Passieren der Küvette wandelt ein breitbandiger Photosensor das auf seine Sensorfläche fallende Licht in einen der Intensität proportionalen Strom um.

4. Service

4.1 Justierung und Kalibrierung

Das Gerät ist bei Auslieferung werkseitig justiert und kalibriert, eine Justierung durch den Kunden ist nicht erforderlich.

Die Justierung wird über die rückseitige Schnittstellenbuchse durchgeführt. Sie kann nur werkseitig vorgenommen werden, Einstellungen durch den Kunden sind nicht möglich.

Informationen zur Kalibrierung des Gerätes sind in Kapitel 6, Qualitätssicherung gemäß Richtlinie der Bundesärztekammer, zu finden.

4.2 Wartung

Das Gerät ist wartungsfrei. Eine Wartung nach Ablauf der Gewährleistungszeit wird empfohlen, ist jedoch nicht zwingend notwendig. Aufgrund der integrierten Prüfung der Gerätefunktionen (Kapitel 8.5) und regelmäßiger Prüfungen mit Kontrollmaterial ist eine Wartung erst dann zu empfehlen, wenn eine dieser beiden Prüffunktionen eine Fehlermeldung anzeigt.

4.3 Reinigung

Zur Reinigung der Oberfläche des Gerätes werden handelsübliche, in klinischchemischen Labors gebräuchliche dekontaminierende Lösungen wie Mikrozid® AF Liquid, Bacillol® plus, 3 % Kohrsolin® o.ä. empfohlen. Bevor das Gerät mit einem weichen Tuch und der dekontaminierenden Lösung gereinigt wird, muss es ausgeschaltet und der Netzstecker gezogen sein.

Achten Sie darauf, dass keine Flüssigkeiten in das Gerät gelangen. Es besteht kein Schutz gegen eindringende Flüssigkeiten (Code IP X0).

Der Küvettenschacht darf vom Anwender des Gerätes nicht gereinigt werden, da dies zur Beschädigung des Gerätes führen kann. Sollte eine Reinigung, insbesondere wegen ausgelaufener Flüssigkeiten oder Glasbruch, notwendig sein, wenden Sie sich bitte an uns.

4.4 Störungen

Bei auftretenden Störungen oder Problemen rufen Sie uns einfach an. Viele Fragen lassen sich am Telefon klären. Nicht funktionsfähige Geräte sind an unsere Berliner Adresse einzusenden. Für die Zeit der Reparatur stellen wir ein Leihgerät zur Verfügung.

4.5 Entsorgung

Nicht mehr benötigte oder nicht zu reparierende Geräte werden von uns kostenlos zurückgenommen und entsorgt.

5. Benötigte Reagenzien und Laborhilfsmittel

5.1 Hinweis zur Haltbarkeit der Verbrauchsartikel

Es ist darauf zu achten, dass alle Verbrauchsartikel nur innerhalb des Haltbarkeitsdatums verwendet werden dürfen.

5.2 Reagenzien / Parameterliste

Folgende Tests können mit dem Duo Photometer plus gemessen werden:

Parameter	Probenmaterial			Tests /	Aut No
Parameter	Blut	Serum	Plasma	Packung	Art. Nr.
Lactat	+	1	+	40	LAC 142
Glucose	+	+	+	40	GLU 142
Hämoglobin (HiCN-Methode)	+	ı	ı	40	HB 142
Hämoglobin (SLS-Methode)	+	-	-	40	HB 342
Erythrocyten	+	ı	ı	40	ERY 142
Hämatokrit	+	ı	ı	40	HCT 142
Bilirubin	-		+	40	BIL 142
Neonatales Bilirubin 1) 2)	+	+	+	40	DIL 142

¹⁾ Minizentrifuge erforderlich (Art. Nr.: DZ 002)²⁾ Aus Blut, mit anschließender Probenvorbereitung (Zentrifugation mit Minizentrifuge)

5.3 Kontrollmaterialien

Art. Nr.	Bezeichnung	Inhalt
HEM QS	Hämoglobin-Kontrolle Hämolysat für die Richtigkeits- u. Präzisionskontrolle der Hämoglobin- bestimmung im Blut im Normalbereich	
ERY QS	Erythrocyten- und Hämatokrit-Kontrolle Kontrollblut für die Richtigkeits- u. Präzisionskontrolle der ERY- und HCT- Bestimmung im Blut im Normalbereich	5 x 1 mL
GLU QS	Glucose-Kontrolle 100 mg/dL	3 x 4 mL
LAC QS	Lactat-Kontrollset 2 mmol/L; 4 mmol/L; 10 mmol/L	3 x 4 mL
BIL QS	Bilirubin-Kontrolle Lyophilisat für die Richtigkeits- u. Präzisionskontrolle der Bilirubin- bestimmung	20 Stk.

5.4 Laborhilfsmittel und Zubehör

Art. Nr.	Bezeichnung	Inhalt
LH 006	Küvettenständer	1
LH 007	Mikropipetter (Pipettierhilfe)	1
LH 009	Zellstofftupfer	500
LH 011	Alkohol-Pads, unsteril	100
LH 026	Ringmarken Pipetten 10 μL	250
LH 028	Ringmarken Pipetten 100 μL	250
LH 029	Ringmarken Pipetten 20 μL	250
LH 037	Microvetten 200 μL, Li-heparinisiert	100
DZ 002	Minizentrifuge	1

Testkits, Kontrollen und alle weiteren Materialien sind bei der Diaglobal GmbH erhältlich und können zusammen mit dem Duo Photometer plus in einem handlichen Koffer aufbewahrt und transportiert werden.

6. Qualitätssicherung gemäß RiliBÄK 1)

Das Duo Photometer plus wurde speziell für die patientennahe Sofortdiagnostik mit Unit-use-Reagenzien entwickelt (RiliBÄK, Teil B, Kapitel 2.1.5). Laut Richtlinie der Bundesärztekammer besteht somit für den Anwender keine Ringversuchspflicht (RiliBÄK, Teil B, Kapitel 2.2, Absatz (3) a)). Damit entfällt die externe Qualitätskontrolle in Form von Teilnahme an Ringversuchen. Es muss lediglich eine interne Qualitätssicherung durchgeführt werden.

Die interne Qualitätssicherung geschieht in Form einer wöchentlichen Richtigkeitskontrolle (Kalibrierung) mit anschließender Dokumentation des Messwertes. Die entsprechenden Protokollvordrucke sind bei Diaglobal kostenlos erhältlich.

Für die Richtigkeitskontrolle der Lactat- und Glucosebestimmung bieten wir spezielle Kontrolllösungen an: LAC QS und GLU QS.

Für die Richtigkeitskontrolle der Bilirubinbestimmung bieten wir das Kontrolllyophilisat BIL QS an.

Für die Richtigkeitskontrolle der Hämoglobin-, Hämatokrit- und Erythrocyten-Bestimmung empfehlen wir unsere Kontrolllösungen HEM QS sowie ERY QS mit Zielwerten im normalen Konzentrationsbereich.

Für alle anderen Parameter empfehlen wir die Universal-Kontrollseren der Firma Roche, www.roche.de:

PreciControl ClinChem Multi 1 Bestell-Nr.: 05 947 626 190 (4 x 5 mL) Normalbereich PreciControl ClinChem Multi 2 Bestell-Nr.: 05 947 774 190 (4 x 5 mL) Patholog. Bereich

Entsprechend den Anforderungen der RiliBÄK ist im Duo Photometer plus eine Prüfung der Gerätefunktion (siehe Bedienungsanleitung, Kapitel 8.5) integriert, dadurch entfällt die tägliche Prüfung mittels eines physikalischen Standards (RiliBÄK, Teil B, Kapitel 2.1.5, Absatz (2)).

Das Duo Photometer plus eignet sich zur schnellen Erkennung des Gestationsdiabetes und erfüllt die Anforderungen der Mutterschaftsrichtlinien ²⁾ und der S3-Leitlinie ³⁾. Die Messung der Glucose kann sowohl aus Vollblut, als auch aus venösem Plasma erfolgen. Der angezeigte Messwert ist - gemäß den Anforderungen - stets auf venöses Plasma bezogen.

¹⁾ Richtlinie der Bundesärztekammer zur Qualitätssicherung laboratoriumsmedizinischer Untersuchungen Deutsches Ärzteblatt | Jahrgang 120 | Heft 21-22 | 30. Mai 2023

²⁾ BAnz. Nr. 36, S914

³⁾ AWMF-Register Nr. 057/008

7. Messverfahren

7.1 Endpunktmessung

Gemessen wird die Extinktion nach Erreichen des Endpunktes.

Die Messung erfolgt gegen den Reagenzien-Leerwert.

Parameter: Hämoglobin (HB), Hämoglobin-SLS (HB SLS), Erythrocyten (ERY),

Hämatokrit (HCT)

Berechnung: Konzentration = $\Delta E \times Faktor$

Die Erythrocyten- und Hämatokritwerte werden über intern gespeicherte

Bezugskurven ermittelt.

7.2 Endpunktmessung mit Berücksichtigung des Probenleerwertes und einprogrammierter Messzeit

Nach Messung des Probenleerwertes wird die Farbreaktion in der Küvette gestartet und die Endpunktextinktion nach Ablauf einer vorgegebenen Zeit gemessen.

Parameter: Bilirubin (BIL), Neonatales Bilirubin (BIL N)

Berechnung: Konzentration = $\Delta E \times Faktor$

Messzeit: 2 Minuten

Die Proben werden nacheinander gemessen:

Probe 01: Messung 1 (Probenleerwert)

Probe 01: Messung 2 (Ergebnis)

Probe 02: Messung 1 (Probenleerwert)

Probe 02: Messung 2 (Ergebnis)

usw.

7.3 Mehrpunktmessung mit Berücksichtigung des Probenleerwertes und Erkennung des Endpunktes

Nach Messung des Probenleerwertes (= Messung 1) wird die Farbreaktion in der Küvette gestartet. Der Reaktionsverlauf wird durch das Gerät kontrolliert (= Messung 2). Der Messvorgang wird beendet, sobald der Endpunkt erreicht ist.

Die Zeit bis zum Erreichen des Endpunktes ist temperaturabhängig. Sie beträgt für den Lactattest in der Regel 2 - 6 Minuten. Bei Temperaturen in der Nähe des Gefrierpunktes können - parameterabhängig - Messzeiten bis zu 20 Minuten resultieren.

Es kann zwischen Einzel- und Serienmessungen bis zu maximal 20 Proben gewählt werden.

Bei Einzelmessungen werden die Proben nacheinander abgearbeitet.

Bei Serienmessungen werden zunächst sämtliche E1-Werte gemessen.

Parameter: Lactat (LAC)

Berechnung: Konzentration im Plasma = $\Delta E \times Faktor$

7.4 Mehrpunktmessung mit Berücksichtigung des Probenleerwertes und Berechnung des Endpunktes

Nach Messung des Probenleerwertes (= Messung 1) wird die Farbreaktion in der Küvette gestartet. Der Reaktionsverlauf wird durch das Gerät kontrolliert. Der Endpunkt wird aus mehreren zu verschiedenen Zeitpunkten aufgenommenen Extinktionswerten berechnet.

Parameter: Glucose (GLU) Messzeit: 2 Minuten

8. Messung

8.1 Einschalten des Gerätes

Taste **<ON/ENTER>** drücken.

8.2 Selbsttest beim Einschalten

Beim Einschalten des Gerätes erfolgt ein Selbsttest der digitalen und analogen Schaltung. Die Prüfung der Gerätefunktion läuft nach dem Einschalten automatisch ab. Sie dauert ca. 5 Sekunden, danach ist das Gerät messbereit.

Hinweis:

Sollte sich während der Prüfung zeigen, dass eine der Gerätefunktionen nicht den geforderten Einstellungen entspricht, erscheint die Anzeige <SERVICE>.

In diesem Fall lässt sich das Gerät nur noch ausschalten.

Bitte rufen Sie den Service von Diaglobal GmbH an (Tel. +49 (0) 30 6576 2597) oder kontaktieren Sie Ihren Fachhändler.

8.3 Testanwahl

Taste **<ON/ENTER>** drücken.

Der gewünschte Test wird mit der rechten bzw. linken Pfeiltaste aus dem Menü ausgewählt:

HB - HB-SLS - ERY - HCT - GLU - LAC - BIL - BIL N - EXT520 - EXT546

Ein Druck auf die rechte Taste aktiviert den jeweils nächsten Test, während mit der linken Taste zum vorherigen Test zurückgegangen werden kann.

Der jeweils ausgewählte Test wird in der oberen rechten Ecke des Displays angezeigt.

Testanwahl mit Taste **<ON/ENTER>** bestätigen.

8.4 Ausschalten des Gerätes

Das Gerät kann durch gleichzeitiges Betätigen der beiden Pfeiltasten ausgeschaltet werden.

8.5 Integrierte Prüfungen der Gerätefunktionen

Selbsttest beim Einschalten

Die Überprüfung der digitalen und analogen Schaltung des Gerätes wird bereits beim Einschalten vom Gerät selbsttätig ausgeführt. Siehe dazu Kapitel 8.2, Selbsttest beim Einschalten.

<u>Differenzmessungen</u>

Alle Messungen beruhen auf Differenzmessungen. Das heißt, nach dem Anwählen des gewünschten Tests fordert das Gerät zu einer Nullmessung mit einer Leerwertküvette auf. Dadurch wird eine Bezugsbasis zum Messwert hergestellt, so dass kleinere Abweichungen kompensiert werden können.

Messbereichskontrollen

Die Messbereiche aller im Display angezeigten Messergebnisse werden durch eine integrierte Messbereichskontrolle überprüft. Bei Messbereichsüberschreitung erfolgt eine Fehleranzeige.

Die für jeden Parameter separat festgelegten Messbereiche sind auf den jeweiligen Packungsbeilagen sowie in dieser Bedienungsanleitung, Kapitel 9, Technische Daten, dokumentiert.

Plausibilitätskontrollen

Bei Mehrpunktmessungen bildet die zuerst gemessene Extinktion die Bezugsbasis. Das Programm überprüft die einzelnen Messwerte auf Plausibilität. Werden bestimmte Vorgaben (z. B. E2 > E1 bei aufsteigenden Reaktionen) nicht erfüllt, wird eine Fehlermeldung ausgegeben.

8.6 Hinweise zur Probennahme und Durchführung der Messung

Zur Durchführung der Messungen verweisen wir auch auf die Tutorials auf unserer Webseite, www.diaglobal.de.

Sicherheitshinweis siehe Punkt 10.

In diesem Kapitel wird auf die häufigsten Fehler, die bei der Probennahme und bei der Dosierung der Probe entstehen können, eingegangen. Fehler in der Probennahme führen in jedem Fall zu falschen Messergebnissen.

- Vor der Messung müssen im Kühlschrank gelagerte Küvetten auf Raumtemperatur gebracht werden. Sind die Küvetten zu kalt, beschlagen sie an der Außenwand aufgrund der Luftfeuchtigkeit mit Wasser, was zu falschen Messergebnissen führt.
- 2. Die Küvette niemals mit bloßen Händen im unteren Bereich (dort, wo sich die Flüssigkeit befindet), anfassen. Falls das versehentlich geschehen sein sollte, die Küvetten vor der Benutzung mit einem fusselfreien Tuch säubern.

Das Säubern mit einem fusselfreien Tuch ist in jedem Fall zu empfehlen. Selbst dann, wenn die Packung noch neu und ungeöffnet ist. Fingerabdrücke auf der Küvette führen zu falschen Messergebnissen.

- 3. Erfolgt die Blutentnahme mit Hilfe der Microvette aus der Ferse (Neonatales Bilirubin) ist darauf zu achten, dass sich genügend Blut (ca. 60 μ L) in der Mikrovette befindet, da zur Messung 20 μ L Serum/Plasma benötigt werden. Die Microvette nach der Blutabnahme gut verschließen und zur Zentrifugation wieder in das kleine Probengefäß zurückstellen.
- 4. Nach dem Zentrifugieren der Microvette bitte darauf achten, dass sich der Blutkuchen vollständig und scharf abgetrennt hat und dass der Überstand klar und frei von Schwebstoffen ist. Andernfalls ist die Zentrifugation zu wiederholen. Sollte der Überstand nicht frei von Schwebstoffen sein oder sollten versehentlich Bestandteile des Blutkuchens in die Kapillare gelangen, wird das Messergebnis verfälscht.
- 5. Erfolgt die Blutentnahme aus der Fingerspitze oder aus dem Ohrläppchen, ist zu beachten, dass der erste, sich spontan bildende Tropfen mit einem Zellstofftupfer weggewischt werden muss. Er enthält einen hohen Anteil an Gewebsflüssigkeit, die das Messergebnis verfälschen würde.
- 6. Der zweite sich bildende Tropfen dient der Blutentnahme. Zur Unterstützung der Blutbildung darf vorsichtig (!) gedrückt werden. Die Betonung liegt auf *vorsichtig*, da sonst wieder zu viel Gewebsflüssigkeit in die Probe gelangt.
- 7. Darauf achten, dass die sich bildende Blutbeere groß genug ist, um die Kapillare in einem Zug mit dem erforderlichen Probevolumen zu füllen. Mehrmaliges Ansetzen der Kapillare führt zu Luftblasen, die sich aus der Kapillare nicht mehr entfernen lassen. Bei Bildung von Luftblasen ist die Kapillare zu verwerfen und es ist erneut mit der Probenahme zu beginnen.

8. Die Kapillare muss exakt bis zum schwarzen Eichstrich gefüllt werden.

Bitte beachten: Es genügt bereits eine Abweichung von nur 1 mm von der Ringmarke, um ein deutlich verfälschtes Messergebnis zu erhalten!

Befindet sich die Probe oberhalb der schwarzen Ringmarke, führt das zu falsch positiven Messergebnissen. Mit einem Zellstofftupfer kann zu viel aufgenommenes Blut vorsichtig heruntergetupft werden.

Befindet sich die Probe unterhalb der schwarzen Ringmarke, führt das zu falsch negativen Messergebnissen. Eine Korrektur ist in diesem Fall aufgrund der sich bildenden Luftblase kaum möglich.

- 9. Bevor die Kapillare in die Küvette gestellt wird, muss sie von außen im unteren Bereich mit einem Zellstofftupfer vorsichtig von anhaftenden Proberesten befreit werden. Andernfalls würde das zu falsch positiven Messergebnissen führen.
- 10. Mit Hilfe des Mikropipetters wird die Probe vollständig in die Küvette überführt. Die vollständige Überführung der Probe geschieht durch das mehrfache Ausstoßen mit Hilfe des Druckknopfes am Mikropipetter.

Bitte beachten: Der Mikropipetter kommt erst dann zum Einsatz, wenn die Kapillare mit der Probe gefüllt ist. Er wird zum Füllen der Kapillare nicht benötigt. Das Füllen der Kapillare geschieht allein durch die Kapillarwirkung.

- 11. Bei Serienmessungen darauf achten, dass die Reihenfolge der Proben nicht vertauscht wird. Andernfalls kann das Gerät die Proben nicht korrekt zuordnen, was zu unplausiblen Messergebnissen führt.
- 12. Beim Kappenwechsel mit der Startkappe darauf achten, dass sich die Substanz in der Startkappe vollständig gelöst hat. Andernfalls kommt es zu einem nichtlinearen kinetischen Reaktionsverlauf, was zu einer Fehleranzeige im Display oder zu unplausiblen Messergebnissen führt.

9. Technische Daten

Lagertemperatur: $-20 \, ^{\circ}\text{C} \dots 70 \, ^{\circ}\text{C}$ Einsatztemperatur: $0 \, ^{\circ}\text{C} \dots 40 \, ^{\circ}\text{C}$

Abmessungen: $200 \times 100 \times 50 \text{ mm}$

Masse: 450 g

Messprinzip: Absorptionsmessung mit Einstrahlphotometer,

gechopperter Betrieb

Strahler: LED

Spektralapparat: Interferenzfilter
Messwellenlänge: 520 nm / 546 nm

Spektrale Halbwertsbreite: ~ 5 nm

Außenlichteinfluss:vernachlässigbarSchnittstelle:V24 (9600, 8, n, 2)Versorgungsspannung:6 V ... 12 V DCStromaufnahme:max. 250 mA

Anwärmzeit: 0 min

Funkentstörung: nach DIN VDE 0871 bzw. DIN VDE 0875

Unrichtigkeit: < 0.5 % bei E = 1,000

Relative photometrische

Kurzzeit-Standardabweichung: < 0,1 %

Messbereiche:	DP 350	DP 350 SI
Lactat	0,2 - 30 mmol/L	0,2 - 30 mmol/L
Glucose	20 - 630 mg/dL	1,1 - 35 mmol/L
Hämoglobin (HiCN-Methode)	0,0 - 50 g/dL	0,0 - 31 mmol/L
Hämoglobin (SLS-Methode)	0,0 - 50 g/dL	0,0 - 31 mmol/L
Erythrocyten	1,0 - 10 Mio/μL	1,0 - 10 Mio/μL
Hämatokrit	5 - 90 %	5 - 90 %
Bilirubin	0,5 - 25 mg/dL	8,5 - 428 μmol/L
Neonatales Bilirubin	2,3 - 50 mg/dL	39 - 850 μmol/L
EXT 520 nm	E = 2,500	E = 2,500
EXT 546 nm	E = 2,500	E = 2,500

10. Allgemeine Richtlinien, Normen und Hinweise

- 1. Richtlinie 98/79 EG über In-vitro-Diagnostica
- 2. EN ISO 9001: Qualitätsmanagementsysteme, Modell zur Darlegung des Qualitätsmanagementsystems in Design / Entwicklung, Produktion, Montage und Kundendienst
- 3. EN ISO 13485: Medizinprodukte, Besondere Anforderungen für die Anwendung von EN ISO 9001
- 4. EN ISO 14971: Medizinprodukte, Anwendung des Risikomanagements auf Medizinprodukte
- 5. EN 61010-1: Sicherheitsbestimmungen für elektrische Mess-, Steuer-, Regel- und Laborgeräte Teil 1: Allgemeine Anforderungen
- 6. EN 61010-2-101: Sicherheitsbestimmungen für elektrische Mess-, Steuer-, Regel- und Laborgeräte Teil 2-101: Besondere Anforderungen an In-Vitro-Diagnostik-Medizingeräte
- 7. EN 61326-1: Elektrische Mess-, Steuer-, Regel- und Laborgeräte EMV- Anforderungen Teil 1: Allgemeine Anforderungen
- 8. EN 61326-2-6: Elektrische Mess-, Steuer-, Regel- und Laborgeräte EMV-Anforderungen Teil 2-6: Besondere Anforderungen, Medizinische In-vitro-Diagnosegeräte
- 9. EN 592: Gebrauchsanweisungen für Geräte für In-vitro-diagnostische Untersuchungen zum Gebrauch durch Fachpersonal

Nationale Richtlinie (Deutschland)

Richtlinie der Bundesärztekammer zur Qualitätssicherung quantitativer laboratoriumsmedizinischer Untersuchungen vom 30. Mai 2023

Hinweis zur elektromagnetischen Verträglichkeit

Das Photometer stimmt mit den in der Normenreihe IEC 61326 beschriebenen Anforderungen an die Störaussendung und Störfestigkeit überein.

Benutzen Sie dieses Gerät nicht in der Nähe von Quellen starker elektromagnetischer Strahlung, weil diese den ordnungsgemäßen Betrieb stören können. Zwischen einem betriebsbereiten (eingeschalteten) Mobiltelefon und dem Photometer sollte während der Messung ein Abstand von mindestens 1 m eingehalten werden.

Hinweis zur geräteinternen Qualitätssicherung

Die Funktionsfähigkeit des Gerätes wird beim Einschalten überprüft. Darüber hinaus werden bei einzelnen Tests während der Messung elektronisch gesteuerte Kontrollen durchgeführt, die bei Nichteinhaltung vorgegebener Bedingungen zu einer Fehlermeldung führen.

Sicherheitshinweis

Beim Umgang mit potentiell infektiösen Materialien (Patientenproben) ist auf eine persönliche Schutzausrüstung zu achten (Handschuhe, Kittel).

11. Anlage: Messungen "Schritt für Schritt"

Siehe folgende Seiten

Gerätebedienung

1. Einschalten: Taste ON/ENTER drücken Gerätecheck abwarten und mit Taste ON/ENTER bestätigen

2. Test auswählen:Pfeiltaste drücken bis gewünschter Test erscheint

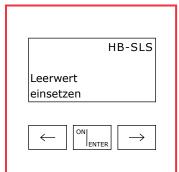
3. Bestätigen des gewünschten Tests: Taste ON/ENTER drücken

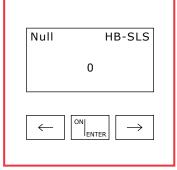
4. Ausschalten:Beide Pfeiltasten gleichzeitig drücken

Hinweis:

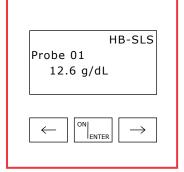
Erscheint nach Ablauf des Gerätechecks SERVICE im Display, hat das Gerät einen Defekt.

Bitte setzen Sie sich in diesem Fall mit unserem Service unter der Rufnummer +49 (0)30 6576 2597 in Verbindung.


1. Kapillare mit 10 μL Blutprobe in die geöffnete Küvette stellen


2. Blut mit Mikropipetter ausstoßen und mehrfach spülen

3. Verschlusskappe wieder aufschrauben Küvette mehrmals über Kopf schwenken 3 Minuten warten HB 342: 30 Sekunden warten


4. Gerät mit ON/ENTER einschalten Gerätecheck abwarten, mit ON/ENTER bestätigen Gewünschten Test auswählen, mit ON/ENTER bestätigen

5. Nullpunkteinstellung: Unbearbeitete Küvette aus der Packung nehmen und in das Photometer stellen Nullpunkt wird vom Gerät gespeichert

6. Nach Signalton Küvette entfernen

7. Küvette mit Blutprobe (Bild 3) in das Photometer stellen

Messwert ablesen

Hinweis zur Serienmessung: Nach der Nullpunkteinstellung können beliebig viele weitere Proben gemessen werden

LAC 142

Einzelmessung

1. Kapillare mit 10 µL Probe in die geöffnete Küvette stellen

2. Probe mit Mikropipetter ausstoßen und mehrfach spülen

3. Verschlusskappe wieder aufschrauben Küvette mehrmals über Kopf schwenken

4. Gerät mit ON/ENTER einschalten
Gerätecheck abwarten, mit ON/ENTER bestätigen
Gewünschten Test auswählen, mit ON/ENTER bestätigen

5. Nullpunkteinstellung: Küvette mit Probe (Bild 3) in das Photometer stellen, Nullpunkt wird vom Gerät gespeichert Nach Signalton Küvette

entfernen

6. Verschlusskappe gegen Startkappe austauschen

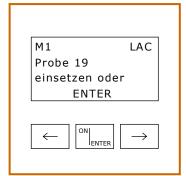
7. Küvette mehrmals über Kopf schwenken

8. Zuerst ON/ENTER drücken und erst **danach** die Küvette in das Photometer stellen

9. Zeitablauf wird angezeigt, Messwert abwarten

LAC 142 - Serienmessung

Anzahl der Proben pro Serie: Bis zu 20 Proben gleichzeitig


1. Die Proben in den Kapillaren nacheinander mit dem Mikropipetter in die Küvetten ausstoßen und mehrfach spülen

2. Verschlusskappen wieder aufschrauben Küvetten mehrmals über Kopf schwenken

3. Gerät mit ON/ENTER einschalten
Gerätecheck abwarten, mit ON/ENTER bestätigen
Gewünschten Test auswählen, mit ON/ENTER bestätigen

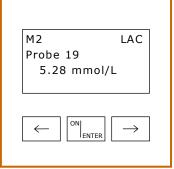
4. Nullpunkteinstellung: Küvetten mit Probe (Bild 2) nacheinander in das Photometer stellen

Die Nullpunkte werden vom Gerät gespeichert

Auf korrekte Reihenfolge der Proben achten!

5. Nach Nullpunkteinstellung der letzten Küvette alle Verschlusskappen der Reihe nach gegen Startkappen austauschten

6. Alle Küvetten **gleichzeitig** mehrmals über Kopf schwenken



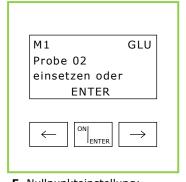
7. Zuerst ON/ENTER drücken und erst **danach** die 1. Küvette in das Photometer stellen Zeitablauf wird angezeigt, Messwert abwarten

ablesen, Küvette entfernen

2. Küvette einsetzen, Messwert ablesen, Küvette entfernen, usw.

9. Vorgang solange wiederholen, bis der Messwert der letzten Küvette angezeigt wird Auf korrekte Zuordnung und Reihenfolge der Proben achten!

1. Kapillare mit 10 µL Probe in die geöffnete Küvette stellen


2. Probe mit Mikropipetter ausstoßen und mehrfach spülen

3. Verschlusskappe wieder aufschrauben Küvette mehrmals über Kopf schwenken

4. Gerät mit ON/ENTER einschalten
Gerätecheck abwarten, mit ON/ENTER bestätigen
Gewünschten Test auswählen, mit ON/ENTER bestätigen

5. Nullpunkteinstellung: Küvette mit Probe (Bild 3) in das Photometer stellen, Nullpunkt wird vom Gerät gespeichert Nach Signalton Küvette entfernen

6. Verschlusskappe gegen Startkappe austauschen

7. Küvette mehrmals über Kopf schwenken

8. Zuerst ON/ENTER drücken und erst **danach** die Küvette in das Photometer stellen

9. Zeitablauf wird angezeigt, Messwert abwarten

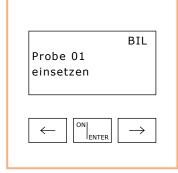
BIL / BIL N (BIL 142)

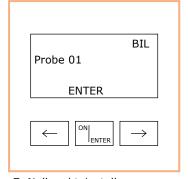
Neonatales Bilirubin: Blutabnahme und Probenvorbereitung siehe Seite 2

Es werden benötigt: Minizentrifuge, Microvette

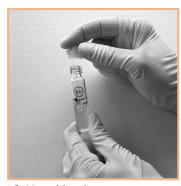
 Kapillare mit der Probe (Serum/ Plasma) in die geöffnete Küvette stellen

BIL: 100 μL (Erwachsene) BIL N: 20 μL (Neugeborene)


Probennahme BIL N siehe Seite 2


2. Probe mit Mikropipetter ausstoßen und mehrfach spülen

3. Verschlusskappe wieder aufschrauben Küvette mehrmals über Kopf schwenken



4. Gerät mit ON/ENTER einschalten
Gerätecheck abwarten, mit ON/ENTER bestätigen
Gewünschten Test auswählen, mit ON/ENTER bestätigen

5. Nullpunkteinstellung: Küvette mit Probe (Bild 3) in das Photometer stellen, Nullpunkt wird vom Gerät gespeichert Nach Signalton Küvette

entfernen

6. Verschlusskappe gegen Startkappe austauschen

7. Küvette mehrmals über Kopf schwenken

8. Zuerst ON/ENTER drücken und erst danach die Küvette in das Photometer stellen

9. Zeitablauf wird angezeigt, Messwert abwarten

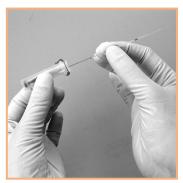
BIL / BIL N (BIL 142)

Neonatales Bilirubin: Blutabnahme und Probenvorbereitung

Es werden benötigt: Minizentrifuge, Microvette

1. Nach dem Anstechen mit der Lanzette ca. 60 µL Blut (ca. 1 Tropfen) mit der Microvette aus der Ferse entnehmen

Microvette verschließen


Beachte: Microvette sorgfältig verschließen, bevor sie in die Minizentrifuge gestellt wird

2. Microvette in die Zentrifuge stellen

3-5 Minuten zentrifugieren

Beachte: Auf eine gleichmäßige Belastung der Zentrifuge achten!

3. 20 µL Plasma aus der Microvette entnehmen

Weiter mit Bild 1 auf der vorhergehenden Seite

Minizentrifuge

Art. Nr. DZ 002

Microvette

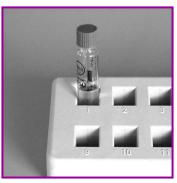
Art. Nr. LH 037 (100 Stück pro Packung)

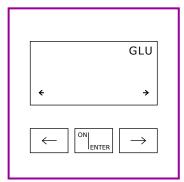
BIL QS

diaglobal

Qualitätssicherung

Überprüfung des Photometers mit Kontrollkappen


1. 20 Kontrollkappen mit lyophilisiertem Kontrollserum BIL QS: Bilirubin (Erwachsene), Bilirubin N (Neugeborene)


2. Kontrollkappe auf eine Küvette des zu prüfenden Tests aufschrauben

Gut mischen

Die Küvette enthält jetzt eine Probe mit einer bekannten Konzentration

3. Küvette 1 Minute stehen lassen

4. Gerät mit ON/ENTER einschalten
Gerätecheck abwarten, mit ON/ENTER bestätigen
Gewünschten Test auswählen, mit ON/ENTER bestätigen

5. Nullpunkteinstellung: Küvette mit Probe (Bild 3) in das Photometer stellen, Nullpunkt wird vom Gerät gespeichert

Nach Signalton Küvette entfernen

6. Kontrollkappe gegen Startkappe des zu prüfenden Tests austauschen

7. Küvette mehrmals über Kopf schwenken

8. Zuerst ON/ENTER drücken, danach Küvette in das Photometer stellen

Messwert abwarten

Ergebnis mit dem Zielwert auf der Packungsbeilage vergleichen