Glycerin

GLY 742

Reagenz zur quantitativen Bestimmung von Glycerin im Biodiesel

Best. Nr. **GLY 742** Inhalt: 40 Tests

Methode

Enzymatischer Farbtest, GPO-PAP-Methode

GK

Glycerin + ATP Glycerin-3-phosphat + ADP

GPO

Glycerin-3-phosphat + O₂ Dihydroxyaceton-

Phosphat + H₂O₂

Peroxidase

H₂O₂ + 2,4-Dichlorphenol Chinoniminfarbstoff

+ 4-Aminophenazon

Reagenz

Inhalt / Konzentrationen:

- 1. Startreagenz (Kappen in PE-Flasche)
- L-Glycerin-3-phosphat-oxidase (GPO) aus Mikroorganismen
- > 3.5 kU/L. Glycerokinase (GK) aus Bacillus stearothermophilus
- > 0,9 kU/L, Peroxidase (POD) > 3,5 kU/L, ATP 2,4 mmol/L,
- 4-Aminophenazon 0,15 mmol/L
- 2. Pufferlösung (vorportioniert in Rundküvetten) 2.4-Dichlorphenol 4 mmol/L. Natriumazid < 0.1 %. Triton X-100 < 1%, PIPES-Puffer 50 mmol/L, pH 7,5

Sicherheitshinweis

Die Pufferlösung (Rundküvette) enthält Natriumazid (< 0.1 %) und Triton X-100 (< 1%). Verschlucken. Berührung mit der Haut und Schleimhäuten vermeiden. Ein Sicherheitsdatenblatt steht auf unserer Webseite zur Verfügung.1)

Lagerung und Haltbarkeit

Die Testreagenzien sind bei +2°C bis +8°C bis zu dem auf der Packung angegebenen Verfalldatum haltbar. Schraubkappen erst unmittelbar vor der Messung aus dem Behälter entnehmen.

Messbedingungen

Messgerät: Biodiesel Photometer Diaglobal

Messwellenlänge: 520nm

Temperatur: Raumtemperatur

Der Algorithmus zur Berechnung des Analysenergebnisses ist in dem genannten Photometer einprogrammiert.

Arbeitsanleitung für wässrige Lösungen

Probenmaterial

Glycerinphase aus der Biodieselherstellung, glycerinhaltige wässrige Lösungen

Arbeitsanleitung

werden.

A. Glycerinpräparate

Probe 1:1000 wie folgt verdünnen: Genau 1.26 g des Glycerinproduktes auf der Analysenwaage abwiegen, in VE-Wasser lösen und im Messkolben auf 1L auffüllen.

Von dieser Lösung 10 uL zur Bestimmung einsetzen. Die Bestimmung kann als Einzelmessung oder in Serie (mit Saldierung der E(0)-Werte = Nullpunkte) durchgeführt

In Rundküvette pipettieren:	
	Analyse
Verdünnte Probe	10 μL
Mischen	

- Test <GLY wäss.> anwählen
- Küvette mit Probe in das Photometer einsetzen (Nullpunkteinstellung)
- Kappe aus der PE-Flasche aufschrauben und Startreagenz durch mehrmaliges Kippen aus der Kappe
- Taste [ON/ENTER] drücken
- Küvette sofort wieder in das Photometer einsetzen
- Nach Ablauf der Reaktionszeit wird das Messergebnis der Probe in mg/dL und % angezeigt

Berechnung

Angezeigtes Ergebnis = GLY [mg/dL]* = GLY [%] **

- * Glycerin-Konzentration d. wässrigen Lösung
- ** Glycerin-Gehalt d. unverdünnten Probe in %

Messbereich

12.6 - 200 mg/dL bzw. 10 - 110 %

Liegt die Glycerinkonzenration unter 10%, ist das Verdünnungsverhältnis entsprechend zu modifizieren. Zum Beispiel:

Probe 1: 100 verdünnen (Ergebnis / 10) bzw. Probe 1: 10 verdünnen (Ergebnis / 100)

B. Wässrige Glycerinlösungen

1 mL Lösung auf 1 L (1:1000) mit VE-Wasser verdünnen. 10 µL zur Bestimmung einsetzen. Testdurchführung wie oben angegeben.

Richtiakeitskontrolle

Die Richtigkeit der Messung kann durch Mitführen eines Vergleichspräparates (z.B. Glycerin p.a., Merck) überprüft werden.

Arbeitsanleitung für organische Proben

Probenmaterial

Biodiesel (Endprodukt) Biodiesel-Phase während des Herstellprozesses

Zusätzlich erforderlich:

LH 051 Reaktionsgefäße mit Styroporperlen

Arbeitsanleitung

Die Bestimmung wird als Einzelmessung durchgeführt. Die wasserunlöslichen Fettsäuremethylester, die eine starke Trübung der Pufferlösung verursachen würden, werden durch Adsorption an Styroporperlen aus dem Bestimmungsansatz entfernt.

- 1000 uL VE-Wasser in das Reaktionsgefäß mit Styroporperlen geben
- 20 µL Biodiesel auf die Styroporperlenschicht auftragen und Kapillarpipette mit der wässrigen Lösung spülen
- Inhalt des Reaktiongefäßes durch mehrfaches kräftiges Schütteln vermischen
- 1 Minute stehen lassen
- 500 uL der wässrigen Lösung in die Pufferlösung GLY 742 pipettieren
- Test <GLY org.> anwählen
- Küvette mit Probe in das Photometer einsetzen (Nullpunkteinstellung)
- Kappe aus der PE-Flasche aufschrauben und Startreagenz durch mehrmaliges Kippen aus der Kappe
- Taste [ON/ENTER] drücken
- Küvette sofort wieder in das Photometer einsetzen
- Nach Ablauf der Reaktionszeit (2 3 Min.) wird das Messergebnis in Ma% im Display angezeigt

Berechnung

Konzentration des Glycerins: c (mg/dL) = Ext x FaktorUmrechnung in Massenprozent: c (Ma%) = c (mg/dL) / Dichte (Biodiesel) / 1000 Dieser Wert wird vom Gerät ausgegeben. Die Dichte des Biodiesels ist mit 0,8776 g/cm³ angesetzt.

Messbereich

0.001 - 0,250 Ma%

Verdünnen bei Überschreitung des Messbereiches

Erscheint im Display die Anzeige GLY > 0.25 Ma%, liegt der Glyceringehalt oberhalb des Messbereiches. In diesem Falle empfiehlt es sich, die im Reaktionsgefäß enthaltene wässrige Restlösung mit VE-Wasser 1:20 zu verdünnen und die Bestimmung mit 500 uL dieser Verdünnung zu wiederholen. Ergebnis x 20

Hinweise

- 1. Soll die Glycerinkonzentration lediglich zur Korrektur des Triglyceridwertes ermittelt werden, empfiehlt es sich, die Bestimmung nach dem Arbeitsgang TRI 742 durchzuführen (Reagenz: GLY 742, Mode <TRI>, Ergebnis in a/dL TRI).
- 2. Das Gesamt-Glycerin also die Summe aus freiem und in den Mono-, Di-, und Triglyceriden gebundenem Glycerin nach EN 14105 kann ebenfalls mit dem Triglyceridtest TRI 742 bestimmt werden.

Hinweise zur Entsorgung

Abfallschlüsselnummer 180106:

Küvetten mit Reagenz gelten als Sonderabfall. Reagenz nicht in Oberflächenwasser oder die Kanalisation gelangen

Entsorgung gemäß den behördlichen Vorschriften. Nichtkontaminierte und restentleerte Verpackungen können einer Wiederverwertung zugeführt werden.

Literatur

1. http://www.diaglobal.de

GLY 742

Reagent for quantitative determination of glycerol in biodiesel

Order No. GLY 742 Contents: 40 tests

Method

Enzymatic colorimetric test, GPO-PAP method

GK

GPO

Glycerol-3-phosphate + O₂ → Dihydroxyacetone

Phosphate + H₂O₂

Peroxidase

 $H_2O_2 + 2.4$ -Dichlorophenol \rightarrow Quinonimine dye

+ 4-Aminophenazone

Reagents

Contents / concentrations of the ready-to-use solution:

- Starter reagent (screw caps)
- L-glycerol-3-phosphate-oxidase (GPO) from microorganisms
- > 3.5 kU/L, Glycerokinase (GK) from bacillus stearothermophilus > 0.9 kU/L, Peroxidase (POD) > 3.5 kU/L, ATP 2.4 mmol/L.
- 4-Aminophenazone 0.15 mmol/L
- Buffer solution (pre-portioned in round cuvettes)
 2.4-Dichlorophenol 4 mmol/L, Sodium azide < 0.1 %,
 Triton X-100 < 1%, PIPES-buffer 50 mmol/L, pH 7.5

Safety information

The buffer solution (round cuvette) contains sodium azide (< 0.1 %) and Triton X-100. Do not swallow and avoid contact with skin and mucous membranes. A safety data sheet is available on our website. 1)

Storage and shelf life

The test reagents can be kept at a temperature between +2°C and +8°C until the expiry date indicated on the packaging. Please take the screw caps out of the container just before the analysis.

Measurement conditions

Measurement device: Biodiesel Photometer Diaglobal

Meas. wavelength: 520nm

Temperature: Room temperature

The algorithm to compute the analysis result is coded in the above-named photometer.

Working instructions for aqueous solutions

Sample material

Aqueous glycerol solutions

A. Compounds of glycerol

Dilute sample 1 : 1000 in this way: Weigh exactly 1.26 g from the glycerol compound, dilute with dest. water and fill up to 1 L in volumetric flask. Take 10 μ L from this solution for measurement.

The measurement can be performed as a single as well as a serial measurement (with a balancing of the A (0) values = blank values).

Pipette into round cuvette:	
	Analysis
Sample	10 μL
Mix thoroughly	

- Select <GLY aqu.>
- Insert analysis cuvette (blank value)
- Screw the cap from PE-bottle onto the cuvette, dissolve the starter reagent by inverting several times
- Press [ON/ENTER]
- · Insert cuvette into the photometer immediately
- After the end of the reaction the measurement result of the sample is shown in mg/dL and in % resp.

Calculation

Result on display = GLY [mg/dL] = GLY [%]

Measurement range

12.6 - 200 mg/dL resp. 10 - 110 %

B. Aqueos alveerol solutions

Fill up 1 mL solution to 1 L (1:1000) with dest. water. Take 10 μ L from this solution for measurement. Procedure of measurement like stated above. If the gycerol concentration is expected to be less than 10%, please dilute as follows: Dilute sample 1: 100, result / 10 Dilute sample 1: 10, result / 100

Note

For the calculation of the glycerol concentration in percent v/v, the density of glycerol 1.26 g/cm^3 has been used.

Working instructions for biodiesel

Sample material

Biodiesel

Additionally required:

LH 051 Reaction tubes with polystyrene pearls

Working instructions

Indissoluble fatty acid methyl ester wich may be create a turbidity in buffer solution will be eleminated through the adsorption on polystyrene pearls.

- Pipette 1000 µL dest. water in reaction tube with polystyrene pearls
- Pipette 20 µL biodiesel with micropipettor on polystyrene pearls and wash out well
- · Mix thoroughly by shaking it well
- Wait 1 minute
- Pipette 500 µL aqueous solution into cuvette GLY 742 with buffer solution
- Select <GLY org.>
- · Insert analysis cuvette (blank value)
- Screw the screw cap from PE-bottle onto the cuvette, dissolve the starter reagent by inverting several times
- Press [ON/ENTER]
- · Insert cuvette into the photometer immediately
- At the end of the reaction time (2 3 min) the measurement result will be displayed in Ma%

Calculation:

Concentration of glycerol:
c (mg/dL) = absorbance x factor
c (Ma %) = c (mg/dL) / density (biodiesel) / 1000
This value is shown on the display.
Density of biodiesel: 0.8776 g/cm³ has been used

Measurement range

0.001 - 0.250 Ma%

Dilute when exceeding the measurement range

In case of exceeding measurement range, on display will shown > 0.25 Ma%. In that case dilute the rest aqueous solution of reaction tube with dest. water (1:20) and repeat the measurement with 500 μ L of this dilution. Result x 20

Note

If the glycerol concentration required only for correction of triglycerid value please perform the measurement with reagent GLY 742 in mode <TRI>.

Result in g/dL TRI

Information on disposal

Waste code number 180106:

Vials with reagent are considered hazardous waste. Do not allow reagent to reach surface water or sewage system. Dispose of in accordance with official regulations. Non-contaminated and completely empty packaging can be recycled.

Bibliography

1. http://www.diaglobal.de